Estimation of Quadratic Functions: Noninformative Priors for Non-centrality Parameters
نویسندگان
چکیده
The estimation of quadratic functions of a multivariate normal mean is an inferential problem which, while being simple to state and often encountered in practice, leads to surprising complications both from frequentist and Bayesian points of view. The drawbacks of Bayesian inference using the constant noninformative prior are now well established and we consider in this paper the advantages and the shortcomings of alternative noninformative priors. We take into account frequentist coverage probability of confidence sets arising from these priors. Lastly, we derive some optimality properties of the associated Bayes estimators in the special case of independent components under quadratic loss.
منابع مشابه
Bayesian Analysis of Bivariate Competing Risks Models
Absolutely continuous bivariate exponential (ACBVE) models have been widely used in the analysis of competing risks data involving two risk components. For such an analysis, frequentist approach often runs into difficulty due to a likelihood containing some nonidentifiable parameters. With an end to overcome this nonindentifiability, we consider Bayesian procedures. Utilization of informative p...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملOn the Invariance of Noninformative Priors by Gauri
Jeffreys’ prior, one of the widely used noninformative priors, remains invariant under reparameterization, but does not perform satisfactorily in the presence of nuisance parameters. To overcome this deficiency, recently various noninformative priors have been proposed in the literature. Ž . This article explores the invariance or lack thereof of some of these noninformative priors including th...
متن کاملBayesian wavelet-based image estimation using noninformative priors
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these de ciencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach ba...
متن کاملPrior distributions for variance parameters in hierarchical models
Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors in this family. We use an example to illustrate serious problems with the inverse-gamma family of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003